A gúla egy olyan test, amelynek alapja egy n-oldalú sokszög, palástja pedig n darab háromszögből áll. Ezeknek a háromszögeknek van egy közös csúcsuk, ami nincs rajta az alap síkján.
A gúlát az alaplapját alkotó sokszög alapján nevezzük el. Például: háromszög alapú gúla, négyzet alapú gúla.
Ha egy gúla alaplapja szabályos sokszög és csúcsának az alaplapra eső merőleges vetülete a sokszög középpontjában van, akkor a gúlát szabályos gúlának nevezzük.
A gúla térfogata
A gúla alaplapjának területét T-vel, magasságát m-mel jelölve a gúla térfogata:
(1) ![]()
Ez ismerős lehet, hiszen a tetraéder térfogatát is pontosan így kell kiszámolni. Ez pedig azért van, mivel a tetraéder tulajdonképpen egy gúla, egészen pontosan a háromszög alapú gúlát nevezzük így.
A gúla felszíne
Jelöljük a gúla palástjának területét P-vel. Ekkor a gúla felszíne:
(2) ![]()
Ha egy gúlába gömb írható, akkor a beírt gömb sugara a gúla adataival az alábbi módon számolható ki:
(3) ![]()
Itt r a gúlába írható gömb sugara, V a gúla térfogata, A pedig a felülete.
Hasznos megjegyzések négyzet alapú gúlákhoz
Négyzet alapú gúla esetén két olyan síkmetszetet készíthetünk, amely a gúlával kapcsolatos számolásoknál hasznos lehet. A metsző sík mindkét esetben tartalmazza a gúla magasságát.
Az egyik esetben a sík átmegy továbbá az alaplapot alkotó négyzet két szemközti oldalának felezőpontján. Ekkor egy olyan egyenlőszárú háromszög keletkezik (EGI) melynek alapja a négyzet oldala, szárai pedig a gúla oldallapját alkotó háromszögek magasságai. Ebben a háromszögben az alapokon nyugvó szögek a gúla alaplapja és oldallapja által bezárt szöget adják.

A másik esetben a sík tartalmazza az alaplapot alkotó négyzet két szemközti csúcsát. Ekkor egy olyan egyenlőszárú háromszög keletkezik (EBC) melynek alapja a négyzet átlója, szárai pedig a gúla oldalélei. Ebben a háromszögben az alapokon nyugvó szögek a gúla alaplapja és oldaléle által bezárt szöget adják. Ebből a háromszögből határozható meg a gúla köré írt gömb sugara is.

Hasznos megjegyzések szabályos gúlákhoz
Ha a szabályos gúla alaplapja valamely n oldalú szabályos sokszög, akkor a fentiekhez hasonlóan két olyan síkmetszetet készíthetünk amelyek a számolások során hasznosak lehetnek.
Az egyik esetben a metsző sík tartalmazza a gúla csúcsát, az alaplapot alkotó sokszög középpontját és az egyik oldalél felezési pontját. Ekkor egy derékszögű háromszöget kapunk, melynek derékszögű csúcsa a sokszög középpontjánál van. A derékszögű háromszög egyik befogója a gúla magassága, másik egy olyan egyenlő szárú háromszögnek a magassága, amit akkor kapunk, ha a sokszöget a középpontjából a csúcsaival összekötjük. A derékszögű háromszög átfogója a palástot alkotó háromszög magassága. Ebben a háromszögben a gúla magasságával szemközti szög a gúla alaplapja és oldallapja által bezárt szög lesz.
A másik esetben a metsző sík tartalmazza a gúla csúcsát, az alaplapot alkotó sokszög középpontját és az alaplapot alkotó sokszög egyik csúcsát. Ekkor egy derékszögű háromszöget kapunk, melynek derékszögű csúcsa a sokszög középpontjánál van. A derékszögű háromszög egyik befogója a gúla magassága, másik egy olyan egyenlőszárú háromszögnek a szára, amit akkor kapunk, ha a sokszöget a középpontjából a csúcsaival összekötjük. A derékszögű háromszög átfogója a gúla egyik oldaléle. Ebben a háromszögben a gúla magasságával szemközti szög a gúla alaplapja és oldaléle által bezárt szög lesz.